RSS

CREACION DE CUBOS OLAP

15 Mar

La propuesta de Codd consistía en realizar una disposición de los datos en vectores para permitir un análisis rápido. Estos vectores son llamados cubos. Disponer los datos en cubos evita una limitación de las bases de datos relacionales, que no son muy adecuadas para el análisis de instantáneas de grandes cantidades de datos. Las bases de datos relacionales son más adecuados para registrar datos provenientes de transacciones (conocido como OLTP o procesamiento de transacciones en línea). Aunque existen muchas herramientas de generación de informes para bases de datos relacionales, éstas son lentas cuando debe explorarse toda la base de datos.

En un sistema OLAP puede haber más de tres dimensiones, por lo que a los cubos OLAP también reciben el nombre de hipercubos. Las herramientas comerciales OLAP tienen diferentes métodos de creación y vinculación de estos cubos o hipercubos.

EJEMPLO I

 Un analista financiero podría querer ver los datos de diversas formas, por ejemplo, visualizándolos en función de todas las ciudades (que podrían figurar en el eje de abscisas) y todos los productos (en el eje de ordenadas), y esto podría ser para un período determinado, para la versión y el tipo de gastos. Después de haber visto los datos de esta forma particular el analista podría entonces querer ver los datos de otra manera y poder hacerlo de forma inmediata. El cubo podría adoptar una nueva orientación para que los datos aparezcan ahora en función de los períodos y el tipo de coste. Debido a que esta reorientación implica resumir una cantidad muy grande de datos, esta nueva vista de los datos se debe generar de manera eficiente para no malgastar el tiempo del analista, es decir, en cuestión de segundos, en lugar de las horas que serían necesarias en una base de datos relacional convencional.

EJEMPLO II

Una empresa podría analizar algunos datos financieros por producto, por período, por ciudad, por tipo de ingresos y de gastos, y mediante la comparación de los datos reales con un presupuesto. Estos parámetros en función de los cuales se analizan los datos se conocen como dimensiones. Para acceder a los datos sólo es necesario indexarlos a partir de los valores de las dimensiones o ejes.

El almacenar físicamente los datos de esta forma tiene sus pros y sus contras. Por ejemplo, en estas bases de datos las consultas de selección son muy rápidas (de hecho, casi en tiempo real). Pero uno de los problemas más grandes de esta forma de almacenamiento es que una vez poblada la base de datos ésta no puede recibir cambios en su estructura. Para ello sería necesario rediseñar el cubo.

 
 

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Salir /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Salir /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Salir /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Salir /  Cambiar )

Conectando a %s

 
A %d blogueros les gusta esto: